If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+20n-5=0
a = 5; b = 20; c = -5;
Δ = b2-4ac
Δ = 202-4·5·(-5)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{5}}{2*5}=\frac{-20-10\sqrt{5}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{5}}{2*5}=\frac{-20+10\sqrt{5}}{10} $
| 3+12(3x+2)=9(x-3) | | 7/5y-11/10=11/10 | | 72=8x+x | | 9x+8=9x-8 | | -8+5-3-5=x | | 7m3−70m2+112m=0 | | 11/15y+13/5y+7/15=7/3 | | 4x+1=4(x-10) | | 0.4(3.2x+2)-x=2x1.8 | | -3.8=3.7x-1.1x+1.4 | | 5*n/8=20 | | 11-2-2+5+9=x | | 3x^2+5x-37=-x^2-7x+55 | | ⅓x-1=3 | | 60=(5+7)•h | | 60=1/2(5+7)•h | | -14=-6+y/2 | | 8x+36=5x+6” | | 45x+40=35x+90 | | 7(3s+7)=217 | | 592=3x+x | | 2(n+6)n=2* | | 7(x-8)+2=3-(x+6) | | n/5n=30* | | 6m=15+3m | | 3n-5n=4* | | X=-15y2-30y-17 | | -9(y-4)=5y+22 | | -3+12=16x-5-15x | | (X-1)(x-3)=48 | | 7x8=56x | | 10^2z/3=15 |